

The Atmospheric Chemistry Experiment (ACE): Mission Update

Kaley Walker^{1,2}, Chris Boone¹, Jay Kar², Gaëlle Dufour³,
Daniel Markel¹, Matthew Cooper¹, Ryan Hughes¹, Randall Skelton¹, Sean McLeod¹,
Peter Bernath^{1,4}, Kim Strong², Jim Drummond^{2,5}, and Tom McElroy^{2,6}

¹University of Waterloo, ²University of Toronto, ³CNRS-Université Paris-12

⁴University of York (UK), ⁵Dalhousie University, ⁶Environment Canada

Aura Science Team Meeting - 14 September 2006

SCISAT-1

Goal: to investigate chemical and dynamical processes that control the distribution of ozone in stratosphere and upper troposphere

Size: 1.12 m dia. x 1 m

Total mass: 152 kg

Total power: 70 W

(from single solar panel)

Launch date: August 12, 2003

Launch vehicle: Pegasus XL

(provided by NASA)

Orbit: 74° inclined circular orbit at 650 km

All ACE measurements to Sept. 10

Global Distribution of Occultations

FTS – Decontamination Results

ACE Mission Status

- Satellite and instrument operations are nominal
 - Both instruments have been acquiring as much data as possible ~11,800 occultations recorded since January 2004
- ACE-FTS profiles (version 2.2 + O3 & HDO updates):
 - Baseline: O₃, H₂O, CH₄, N₂O, NO₂, NO, HNO₃, HCl, HF, CO, CFC-11, CFC-12, N₂O₅, ClONO₂, temperature and pressure from CO₂ lines
 - Other routine: COF₂, CHF₂Cl, CF₄, CH₃Cl, C₂H₆, SF₆, OCS, HCN
 - Research: CCl₄, HOCl, H₂O₂, HO₂NO₂, CCl₂FCClF₂, CH₃CClF₂, ClO,
 C₂H₂, N₂ and additional isotopologues
- MAESTRO profiles (version 1.2):
 - O₃ and NO₂ (optical depth)
- IMAGERS profiles (version 2.2):
 - extinction profiles at 0.5 and 1.02 microns

ACE-FTS Ozone Microwindows

Inconsistency
between two
microwindow
ranges with
HITRAN2004
(10 micron vs.
5 micron)

New retrieval version is more consistent - uses only ~10 micron band

ACE-FTS Ver2.2 Ozone Update

Coincidence criteria: 500 km and 12 hours of sonde launch

Daniel Markel

O₃: MAESTRO, FTS and SAGE III

Above 27 km, MAESTRO O₃ tends to be lower than SAGE III for sunrises and higher for sunsets Also seen in ozone comparisons with POAM III and **ACE-FTS**

Solid line: MAESTRO (v1.2) & dotted line: ACE-FTS (v2.2 update)

Fractional diff = (ACE-SAGE)/mean

Jay Kar

NO₂: MAESTRO, FTS & SAGE III

NO₂ behavior differs from ozone, both sunrise and sunset profiles lower than SAGE III above 27 km Suggests that this is not a timing offset - further investigation being done

Solid line: MAESTRO (v1.2) & dotted line: ACE-FTS (v2.2 update)

Fractional diff = (ACE-SAGE)/mean

Jay Kar

ACE-IMAGER vs. SAGE II (0.5 μm)

• SAGE II, SAGE III, POAM III and HALOE no longer function: ACE can extend this time series

Coincidence criteria: 200 km and 1 hour (15 profiles)

Kathy Gilbert

CH₃OH contribution to the spectrum

Methanol Retrievals

First retrieval of methanol from remote sounding instrument

- Enhanced profiles in biomass burning plumes SH Oct. 2004
- Similar to results from aircraft measurements in this type of plume

Mission Average Zonal Means

COF₂ Measurements

HF Measurements

Asymmetry seen in ACE-FTS COF₂ and HF distributions in NH and SH (also seen in model study by Kaye et al. 1991)

Matthew Cooper

Summary

- Validation and Science highlights
 - Improvements have been made in ACE-FTS and ACE-MAESTRO products based on comparisons
 - v2.2 (plus ozone updates) for ACE-FTS and v1.2 for MAESTRO are in the AVDC and are being updated regularly
 - Preliminary comparisons of IMAGER optical depth
 - First measurements of upper tropospheric methanol profiles
 - Contribution to upper tropospheric "air quality" studies measuring CH₄, CH₃OH, HCOOH, HCN, C₂H₂, C₂H₆ plus perhaps PAN and acetone
 - Determination of global distribution of COF₂

Acknowledgement

Funding for ACE provided by:

- Canadian Space Agency (CSA)
- Natural Sciences and Engineering Research Council of Canada (NSERC)
- NSERC-Bomem-CSA-MSC Research Chair in Fourier Transform Spectroscopy (at U. Waterloo)

ACE Validation Program

Everything is underway...

- If you have signed up, you should be receiving e-mails about ACE Validation! If not, let me know.
- We would like to involve as many different groups as possible so if you would like to work with us, contact me:

validate@acebox.uwaterloo.ca

- Efforts are organized by subgroups:
 - O₃, H₂O, CH₄, CO, NOy+N2O, Cly/Fy, p/T, aerosols
 - We will put you in contact with the appropriate subgroup

https://databace.uwaterloo.ca/validation/